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TECHNICAL MEMORANDUM X-64545 

ELECTROMAGNETIC SCATTERING BY CYLINDERS - AN INTRODUCTION 

SUMMARY 

This report, the first of a series of papers, presents an introduction to the 
scattering of electromagnetic waves by cylinders. The basic scattering features particular 
to cylinders are discussed from the Rayleigh-Gans theory. 

In the first part of the report a review of electromagnetism and a derivation of 
dipole radiation are presented. In the second part, the basic scattering theory is given. 
From the equations for dipole radiation, the theory of scattering by cylinders according 
to the Rayleigh-Gans theory is developed. 

A computer program to calculate the scattering intensity functions is presented. 

I NTRO DUCT ION 

This report is the first of a series of papers describing the scattering of electro- 
magnetic waves by cylinders. The applications are numerous, e.g., in studying cylindrical 
plasma, polymers, paints, rodlets, and platelets; in the fields of astronomy, chemistry, 
meteorology, and physics. Cylindrical scattering differs from spherical scattering in 
several important ways. There is a loss in the degree of symmetry introducing anisotropic 
processes which can generally be characterized by a shape factor. There are off-diagonal 
components in the scattering matrix which arise from the mixing of the electric field 
components. 

The general methods to be discussed in these reports are (1) Rayleigh, ( 2 )  
Rayleigh-Gans, (3) infinite cylinders, (4) finite cylinders by neglecting end effects, ( 5 )  
geometric scattering, (6) Watson transformations, (7) Wiener-Hopf technique, (8) per- 
turbation techniques, (9) symmetry techniques, (10) S-matrix theory, and (1 1) diffraction 
theory. 



ELECTROMAGNETIC THEORY 

Maxwell Equations 

Light, electromagnetic radiation, is described by Maxwell's equations. All 
theoretical optics problems, including scattering problems, can be solved formally by 
using Maxwell's equations. 

The state of excitation (force) which is established in space and detected by the 
presence of an electric charge is said to constitute an electromagnetic field. The electro- 
magnetic field is a vector field, and associated with it are the two vectors E and B, 

called the electric field vector and the magnetic induction vector, respectively. The 
spatial and temporal derivatives of these two vectors are defined by Maxwell's simultaneous 
partial differential equations [ 1 ] : 

N N 

V - D = p  
N 

V * B  = 0 
N 

a B  
N 

V X E = - -  
a t  N 

a D  

a t  
V X H = J + z  

N N  

where p is the electric charge density. The vectors D, H, and J , are the electric 

displacement, the magnetic vector, and the electric current density, respectively. For 
macroscopic media, the dynamical response of the aggregates of the atoms is summarized 
in the constitutive relations for isotropic, permeable, conducting dielectrics [ 21 : 

r Y N  N 

D = E E  
N N 

J = a E  

B 

P 

N N 

N H = -  
N 

2 



where e is the electric permittivity, (T is the specific electrical conductivity, and ~ . l  is 
the magnetic permeability. In this work, e and p are assumed to be scalars. 

Maxwell’s equations are the results of particular experimental laws: equation (1) 
from Coulomb’s law, equation (4) from Ampere’s law, equation (3) from Faraday’s 
law, and equation (2) from the observed nonexistence of magnetic monopoles. 

Table 1 gives the units of the electromagnetic quantities. 

TABLE 1. ELECTROMAGNETIC QUANTITIES IN SI UNITS 

Symbol 

E 

H 

D 

B 

S 

N 

N 

N 

N 

N 

C 

e 

E.l 

Quantity 

Electric Field 

Magnetic Field 

Electric Displacement 

Magnetic Induction 

Poynting’s Vector 

Speed of Light 

Electric Permittivity 

Magnetic Permeability 

Unitsa 

N/C 

C/m.sec 

C/m2 

N-sec/C-m 

N.m/sec-m2 

m/sec 

C2 /N.m2 

N.sec2 IC2 

a. N = newtons, C = coulombs, and m = meters. 

Wave Equations 

Maxwell’s equations predict the existence of electromagnetic waves propagating 
with the velocity of light, which lead to the electromagnetic theory of light. The wave 
equations are obtained by vector operations [ 31 on Maxwell’s equations. The equations 
are usually solved in applications using the appropriate boundary conditions for a 
particular problem. Assuming the isotropic case (the constitutive equations), 

D = e E ,  and J = o E  
N N N N 

3 



then in a region with no free charges, Maxwell’s equations are: 

V . E E = O  
N 

V * B  = 0 
N 

a B  
N 

V X E = - -  

B 

/.l 

a t  N 

aE 
v x  - = a E +  e - 

N N 

a t  N 

Taking the curl of equation (lo), we have 

a (VX B )  
N 

V X ( V X  E)  = - - 
a t  N 

On substituting equation (1 1) for the curl B ,  we obtain 
N 

a t  
V X  (VX E)  = - - 

at N 

Now, for any vector it is true that in Cartesian coordinates 

V X ( V X  E) = V ( V * E ) - V 2  E 
N N N 

but V E = 0 in the charge free region. Therefore, equation (1 3) becomes 
N 

I aE a2 E I 
I N N 

- / . l e -  = o  . V 2 g - p a  at a t2 

Similarly, take the curl of equation (1 1): 

4 



Then, upon substituting from equation (10): 

a2  B a B  

N a t  a t2 
N N 

V X  (VX B) = - 0 1  - - 

or 

I I v 2 g - o p -  - p e -  = 0 
N N 

at a t2 

Equations (14) and (16) are the inhomogeneous vector wave equations for E and B. 
N N 

In a nonconducting medium, u = 0 and the second term in equations (14) and 
(16) vanishes, leaving a propagation equation for waves with a velocity v = l / f i  . 

The boundary conditions at an interface between two media are [4] : 

1. The normal component of B is continuous. 
N 

2. There is a discontinuity in the normal component D equivalent to K,  the 
N 

surface charge density, 

3. The tangential component of E is continuous, 
N 

(E, - E , ) X  h = 0 

4. There is a discontinuity in the tangential component of H equal to L, the 
N N 

surface current density, 

(H, - H I )  X = L 
N N  N 

5 



Plane Waves 

We now consider the homogeneous vector wave equations (a = 0) in which the 
field depends only on one coordinate r and on time. Such waves are said to be “plane”: 

N 

V 2 E - p e -  = O  a t2 N 

a2 B 
N 

VZB-pLE - = 0 
N a t2 

Assume 

E (r , t) = Eo f(r , t) (I_ N N I 
where f(r , t) satisfies the scalar wave equation: 

N 

V 2  f ( r , t ) - p e f ( r , t )  = 0 . 
N N 

Now let 

then 

but V r is the idemfactor [3]. Thus, 
N 

6- 



and 

v f ( r ,  N t) = fi f (41. N r -vt) 

Also 

From ( 17) and ( 18) we have 

Hence, the solution for E and B is 
N N 

E (r , t) = Eo f (f; r - vt) 
N N  N N 

B (r , t) = Bo g (fi . r - vt) 
N N  N N 

The wave equations do not relate f, g, E,  and B , but Maxwell’s equations do. 
N N 

From Equation (8) 

V - E  = 0 
N 

7 



and substituting 

E = Eo f ( 6 - r  -vt) , 
N N  N 

we have 

V-(Eo f) = Eo .Vf  Eo m f i f ’  = 0 
N N N 

Therefore, 

I E o - A =  0 , I 
which states that E is transverse to the direction of propagation. Similarly, for B 

N N 

From equation (lo), we have: 

- B  = V  X E 
N N 

- B  = V X ( E o f )  
N N 

- B  = V f X  Eo = A X  Eo f 
N N N 

From equations (1 8), ( 19) and 

B = g ( 6 - r  -vt) , 
N N  N 

8 



we have 

hence, 

- B o  g' 

6 
N 

= f ix  Eo f' 
N 

Bo dg = f; X Eo df 
N 6 -  

E and B are mutually orthogonal and are perpendicular to the direction of propagation 

n. 

N N 

A 

Propagation Constant 

For a plane wave propagating along the positive z-axis, the component of E 
N along the x-axis can be written as: 

(23) = A ,i(kz - at) 
EX 

where only the real part of the exponential is to be taken as the physical quantity. 
Substituting equation (23) into equation (14) yields 

9 



Therefore, the propagation constant, k, is related to the constitutive constants of the 
medium 

and may be represented as [41 

where 

and 

1 f2 1 f2  

01 = - (  [ ( I + - )  € 2 0 2  4 ] 
Thus, for a conducting or dissipative medium (u > 0), the propagation constant is 
complex, providing a damping part e-01' to the wave which corresponds to absorption. 

Polarization 121 

The plane wave 

E = 21 Eo f ( A  - r - vt) 
N N 

is a wave with its electric field vector always in he direction 21 . Such a wave is said 0 

be linearly polarized in the direction of 
two linearly polarized independent waves are needed. Consider harmonic plane waves 

. To describe a general state of polarization, 

i(k r - a t )  
N N  f (r, t) = e 

10 



where 

- " = v  , and k = k f  
N k 

Then the general state of polarization can be described with the following two waves: 

i k  - r - i o t  
N N  El = z1 El e 

N 

i k - r  - i o t  
N N  E2 = E2 e 

N 

with 

N J  B . = f i f i X E ~  j = 1 , 2  

and g1 perpendicular to g2 . The amplitudes El and E2 are complex numbers to 
allow the possibility of a phase difference between the waves. The general harmonic 
wave solution is a linear combination of El and E2 , 

N N 

i(k - r - u t )  
N N  E (r , t) = (E", El + g2 E,) e 

N N  

If El and E2 have the same phase, equation (25) represents a linearly polarized wave, 
with its polarization vector making an angle 6 = tan-l (E, /El ) with 2, and having a 
magnitude E = Jm. 

If El and E2 differ by a phase of 90 deg, then 

i(k . r - u t )  
N N  

E (r , t) = Eo (gl i z2 ) e 9 
N N  

and the wave is circularly polarized. The "i-" sign is for left circularly polarized waves 
or i s  said to have positive helicity. The negative sign is for right circularly polarized 
waves or negative helicity. 

11 



For polychromatic radiation, the harmonic plane wave solution has the form 

i(k r - a t )  
2 

E N N  ( r ,  t) = 1 /dkEOngn(k)e 
A= 1 

where Eon are amplitude functions determined by E (r , t) at a specified time, and 
E^n is the polarization vector. 

c y -  

Poynting Vector 

For a periodic field such as the electromagnetic wave, the energy crossing a unit 
area per unit time is given by the Poynting vector 

S = E X H  
N N N  

The time-average flux of energy is given by the real part of the complex Poynting 
vector: 

1 S = - (EX H*) 
N 2 - -  

Because 

by equation (22) for plane waves, then 

N S = ~ ~ 1 E 1 2 ~  2 . 

The energy density d is 

12 



The Poynting vector is in the direction of propagation and can be regarded as a 
measure of the intensity of the wave at a point. The Poynting vector gives the flux 
density at the surface, L, which is called by Van de Hulst the intensity, “I”, 

Electromagnetic Potentials 121 

Vector potentials are often introduced to simplify problem solving. According 
to equation (2), 

then the field of B is always solenoidal. Since 
N 

v *(VX v) = 0 
N 

B can be represented as the curl of another vector A. : 
N N 

However, A. is not uniquely defined by equation (28) because B is equal also to the 
curl of some vector A , 

N N 

N 

where 

13 



Since 

v x (V$) = 0 

J/ is any scalar function of position. If B is replaced in 
N 

V X E = - -  N 

N a t  

by either equations (18) or (29), then 

or 

Thus the fields of the vector 

aA0 
E +  - 

a t  
N 

N 

or 

aA 
N E +  - - at 

are irrotational and equal to gradients of scalar functions 4 and $ o  : 

14 



and 

The functions r$ and Go are related by 

To show this, recall that A is given by 
N 

and from equations (3 1) and (32), 

a $  
N - V G +  - - v -  

a t  a t  a t  

aA0 
N 

aA 
= vl$+ - VGO +- - aA0 - 

a t  

VGO = v l $ -  v- a$  
a t  

or 

a $  V G  = vl$,+v - 
a t  

and finally, 

a $  
@ = G O + -  a t  

15 



The functions A are vector potentials of the field, and the 4,s are scalar 
N 

potentials. Using D = E E  N and N B = p H ,  N then 
N 

( :: ) H = - V X A  1 D = - E  V $ +  - 
P N N 

Equations (1) and (4) of Maxwell's equations yield: 

a 2  A 
+ p ~  - = p J  a t2 

N 

N 

V X V  X A + ~ E  V- 
N a t  

Imposing the Lorentz condition, 

we then have 

where $I, and A,, are particular solutions. $ and A N are defined by 
N 

a 2 A  
v x v x  A-VV * A + ~ E  - N 

= /J J 
N 

N a t2 N 

1 I 

16 



Now,using V X V X  A = V V . A - V - V A ,  
N N N 

For the homogeneous case 

D = - V X A '  
N N 

the wave equations for these potentials are: 

a2A' 
N 

V 2  A'-  /.LE - = 0 
N a t2 

with the condition that 

[ V.&'+PE - - - 0 I . 
a t  

Retarded Potentials 

Starting from equations (35) and (36) 

a 2 A  

(37) 

(38) 

(39) 

17 



a solution of the inhomogeneous linear equations for an initial value problem can be 
represented as the sum of the solution of these equations without the right-hand side 
(RHS) and a particular solution of these equations with the RHS. To find the particular 
solution, we divide the whole space into infinitely small regions and determine the field 
produced by the changes located in one of these volume elements. Because of the 
linearity of the field equations, the actual field will be the sum of the fields produced by 
all such elements, i.e., an integral [ 5 I . 

The charge de in a given volume element is, generally, a function of time. If we 
choose the origin of coordinates as the center of the volume element, then the charge 
density is p = de(t) 6 (R) where R is the distance from the origin and 6 represents 

the Dirac delta functions. Thus, we must solve the equation 
N 

Everywhere 6 (R) = 0 we have 
N 

For the case of central symmetry, Le., I p  is a function of R only, we have 
N 

Assuming $ = x(R, t)/R; then 
N 

I8 



But this is the equation for plane waves, whose solution has the form 

x = f , ( t -  $) + f 2  (t. :) : 

where v = I/*. Since we want only a particular solution of the equation, it is 
sufficient to choose only one of the functions fl and f2. Usually it is convenient to 
take f2 = 0, since this physically represents a wave that is observed before it is generated. 
Then, everywhere except at the origin, @ has the form, 

So far, the function x is arbitrary; we now choose it so that we also obtain the 
correct value for the potential at the origin. We must select x so that at the origin 
equation (42) is satisfied. This is easily done, noting that as R + 0 the potential increases 
to infinity, and, therefore, its derivatives with respect to the coordinates increase more 
rapidly than its time derivative. Consequently as R + 0 we can, in equation (42), neglect 
p e a 2  @/at2 compared with V 2 @ .  Then equation (42) goes over to the familiar equation 
leading to Coulomb’s law, i.e., from 

1 V 2 @  = - - de(t)6(R) 
N E 

and since 

V (4) = - 4 ~ 6 ( R )  N , 

we have 

19 



Thus, near the origin equation (43) must go over into the Coulomb’s law, from which it 
follows that X(t) = de(t)/4ne , that is, 

de ( t -  $) ’ = &eR 

For an arbitrary distribution of charges p(x, y, z, t), one can find the solution 
to equation (41). Let de = p dV and integrate over the whole space. To this solution 
of the inhomogeneous equation we can still add the solution @ o  of the homogeneous 
equation. Thus, the general solution has the form: 

where R2 = (x - x ‘ ) ~  + (y - Y ’ ) ~  + (z - z ’ ) ~  and dV’ = dx’ dy’ dz’. R is the distance 
from the volume element dV’ to the “field point” at which we determine the potential. 
Similarly, 

Without G o  and A. the above are the “retarded potentials.” The volume integrals 
in equations (44) and (45) represent the contributions from charge distributions contained 
in the volume element. A. and Go represent the contributions from fields whose origin 
is external to the system. 

The solution of the wave equation can be accomplished “directly” with Green’s 
functions, G ,  where G satisfies [5] 

a 2  G V2G-/..t€ - = 6(R)6(t) a t2 

and the solution to this equation can be obtained by Fourier transforms. 

20 



Dipole Radiation [2] 

In the following, the radiation from an electric dipole is discussed. Assume that 
the distribution of charges changes little during the time r’/c where rf refers to the position 
of the source point. Let the radiation of the system have periods of order T. Let a be the 
order of magnitude of the system. The time r‘/c is of the order a/c. So that the distribu- 
tion of charges in the system shall not change significantly during this time, it is necessary 
that a/c << T; but CT = h,  the wavelength, hence, a condition for the following discussion 
is 

a << h (46) 

Assume that 

and that the electromagnetic potentials and fields have the same time dependence. Since 
the time-dependence factor is the same in all terms, it can be dropped. Then from 
equations (45) and (48) the retarded vector potential is 

where Ir - r’l = R, k = w/c, and d3 rf = infinitesimal volume element. Confining the 
N N  N 

source to a region that is small compared with the wavelength and considering r >> a 
(Fig. l), then 

h Ir-r’l z r - n . r ‘  + . . . . .  
N N  N 

21 



SOURCE POINT 

ORIGIN ry r FIELD POINT 

Figure 1. Geometry for the source point, field point, and origin. 

fi is a unit vector in the direction of r , and 
N 

A (r) = 
N N  

~ ,ikr 
4nr  J 

-ik (fi r’ + . . .) 
d3 r’ N J (r’) e 

N N  

A ri [ 1 - y  + . . .  ] 
If r >> a and a << X we can expand the exponential: 

The mth term of the vector potential becomes 

A m = & ! ? . . . - -  i kr (-i k)m + . . . + >-) /:(I-’) (A . N r’) d3 r‘ 
4nr  m! (ikr)m 

where 9 are integers. In the far field where r >> a we have 

J (r’) (fi * N r’)m d3 r’ J-- lim %-‘E?- ikr ___ (-ik)m 
4n r m! kr-- 

22 



Taking m = 0, equation (5 1) becomes 

A(r) = E----- J - (9d3r '  
N N  4s r 

Integrating by parts, the integral becomes 

/d3r' J-(r') = - 

The last step comes from the continuity equation 

or 

Hence, the vector potential is 

N N  4s r 

where p the electric dipole moment is defined as 
N 

The electric dipole fields are 

(53) 

B = V X A =  - P w k  ( f i x p )  L ( 1 - k )  ikr 
N - 4s - r  

23 



E = - -  V X B = - ~ K V X B  
N k2 N a t.le N 

- _ _  
4 n  e 

,ikr + 1 ~ ~ ( a . p ) - p ]  ($ --!&) ,ikr - k2 ( a x  p) x a - 
N N  r 4ne .) N 

In the far-field zone, 

SCATTERING THEORY 

Scattering Amp1 itude 

The scattering of plane waves by a particle is completely described by a knowledge 
of the fields at every point in space. Generally, the observer is interested in knowing the 
fields at his location. He desires to know the scattered fields at large distances from the 
scatterer where the scattered waves are less complex and appear spherical. In this region 
the amplitude of the scattered waves decreases inversely with the distance r from the 
particle, and the phase has a simple e+ikr dependence. The scattering amplitude defines 
the strength and phase of this outgoing spherical wave. Since the amplitude and phase of 
the scattered radiation differ in various directions from the scatterer, the scattering 
amplitude 
tances, we write the asymptotic form in the two-component notation: 

is a function of position. Since the electric field is transverse at  large dis- 

ik  r ikr 
N N  

d i l  ( e , @ )  e r 5 
E (r) - Eo e 
N N r+m- ( 5 5 )  
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The scattering amplitude is most conveniently described by a scattering matrix 
which allows the polarization directions to be handled in a simple manner. 

Figure 2 shows the coordinates used to describe the direction of the incident and 
scattered radiation along with its polarizations. The x, y, and z axes are fixed to the 
scatterer but chosen so that the z axis is along the direction of the incident radiation. 
The unit vector fi is in the direction of the incident radiation having the propagation 

Figure 2. Geometry for the scattering theory. 
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vector k,  and the unit vector fi' is similarly defiied for the scattered radiation having 
the propagation vector k' [6]. The vectors a and 6' (or k and k') define the 

scattering plane, and the angle between fi and a' is the scattering angle 0 (0 < 0 < 180). 

N 

N N N 

The components of the electric field are referred to the f - n̂  system for the 
incident radiation and the 1' - i' system for the scattered radiation. These systems 
simplify the discussion of polarization direction. The unit vector f is perpendicular to 
the scattering plane, and the x-axis of the particle makes an angle @ with 2. The unit 
vector R ,  which is in the scattering plane, is chosen so that 3 X n  ̂ = fi, and the unit 
vector 6' is chosen so that ?' X n̂ ' = n'. The unit vectors r^ and 1' are the same. The 
quantities Eo and Eo are the amplitudes of the components of the electric field in 
the incident beam along the two directions defined by f and n .̂ Likewise, E, and ER 
are the electric field components of the scattered radiation along 3' and ??'. 

A 

h 

The scattering amplitude tensor which relates the incident and scattered waves is 
defined by 

or 

The four scattering amplitude functions SI , S2 , S3 , and S4 are all functions of 0 and 
@ and, in general, are complex. As stated above, the components (ER, Er) and 
(Eo R,  Eor) are referred to different sets of coordinates, is . ,  (R', r') and (??, ;). Hence 
the scattering amplitude tensor is a function of k and k' , Le., 

A h  

N N 

S ( 0 , @ )  = - S(k ,  k') . 
- N N  - - 

The linear relation implied by the S-matrix (scattering matrix) between E and Eo 
is a consequence of the linearity of Maxwell's equation. Because E and Eo are vectors, 
S (k, k') must be a tensor as shown. For no scattering, S reduces to'a unit matrix. 

N N 

N N 

- - - - - C Y  
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Differential Cross Section 

Lsca 
Linc 

The differential scattering cross section du/dQ is the ratio of the flux scattered 
from the object per unit solid angle to the incident flux on the object per unit area. 

R2 

du - energy scattered/unit time/unit solid angle 
energy incident/unit timelunit area (57) 

-~ 

In. terms of Poynting's vector, S , for the incident and scattered fluxes, we have 
N 

Scattering by E L t r i c  Dipoles (Rayleigh Scattering) 

We now consider an electric dipole at the origin of a Cartesian coordinate system 
upon which a monochromatic plane wave impinges from along the negative z-axis 
(Fie. 2). 

If the electric dipole is generated by electrons and if the incident wave is S 
harmonic plane wave of the form, 

then the equation of motion is 

m r  = e E ( z = O )  
N N 

Since p = e r , the electric dipole moment is found from 
N N 

e2 p = - E ( z = O )  , - m -  

to be 

r' 
Eo 1 

e2 P = - -  
N w2m 
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Note that the use of E at z = 0 in the equation of motion implies that r << A, i.e., 
the dipole approximation. 

N 

In a dielectric in the presence of an externally applied electric field, the molecular 
dipoles are streteched and become oriented. A net electric moment is produced in the 
direction of the applied field. The dipole moment per unit volume for an isotropic 
dielectric medium is related to the external electric field by 

p = a E  
N N 

where a [Cz m/N] is the proportionality constant, the polarizability, and is dependent 
on the frequency of E. From the discussion on dipole radiation the radiation fields for 
an electric dipole are [eq. (54)l 

N 

,ikr 
E = - "  3 X f i =  - k 2 ( ( p X f i ) X f i )  
N k -  47rer N 

p x i ;  B = -  w p keikr 
N 47rr N 

where E , B,  and p were assumed to have a harmonic time dependence. 
N N  N 

Since the incident electric field is along the z-axis 

E. = E , i k z - i o t  ,inc 0 

or 

%nc = (Eor?+EoQ!2)e i k z - i w t  

where Eo = Eo sin $ and EoQ = Eo cos $. Hence 
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where we have used 

Then 

B - sca = - *k aeikr(EorPX f i '+EoQ8X fi') 
471 r 

Now since 

where we have used t = L (c, fi') and cos 6 = sin 5. Therefore, 

B - - -  opkae ik r  (- 8') + EoQ (r^ cos e )  
~ I T  r ,sea 

and 

ueikr k2 
47rer 

( Eo, (- fi' X 8') + Eop COS e (fir x 3') ) - - 

a ,ikr k2 h 

(Eo r' + Eo p cos e if) - - 
4ner  (59) 
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Hence, 

where 

a k 2  cos0 

SI = - -I 4?T E 

The time-averaged Poynting vector for the scattered wave is 

In the far radiation zone, E and H are perpendicular to each other and to the direction 

of propagation. For a harmonic wave under these conditions, 
ly N 

thus 
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or 

k4 2 2 
(Eor G' + E,, cos2 0 i') 

2 ,sca 

Therefore, the energy flux densities L = 1/2 
are related by 

E2 for the incoming and scattered waves 

If $ = 0 deg, then 

if $ = 90deg, 

and if $ = 45 deg or the incident radiation is unpolarized, 

1 - - a2 k4 - ( I  +cos2 8)Linc 
L s ~ a  (4ne)z r2 2 

For natural incident radiation, this is the same as averaging over all polarization angles, 
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This scattering is called Rayleigh scattering. The differential scattering cross section becomes 

do = Lscar2 - - -  u2 k4 -l- (1 + c0s2 e )  
LinC (47f e)2 2 

Rayleigh-Gans Scattering [71 

Assume that each volume element in som6 finite volume gives Rayleigh scattering 
and does so independently of the other volume elements. The waves scattered in a given 
direction by all these elements interfere because of the different positions of the volume 
elements. To calculate the interference effects we have to refer the phases of all scattered 
waves to a common origin of coordinates and then add the complex amplitudes (Fig. 3). 

Figure 3. Scattering by a finite volume. 

Consider the volume element in Figure 3. If p is the dipole moment per unit 
N 

volume, the magnetic induction for the scattered field at point P is 

(pdVX I%) . B = -  o p  keik 
N 417 R N 
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Integrating over the volume, this expression becomes 

ik  R 
B = -  * f 3--.-- 

d V ( p X m )  
N 4?l R N 

( 4 4 )  

With f;, a unit vector in the incident direction, and I%, a unit vector in the scattered 
i k R  (Fig. 4), ie., kR direction, the phase of e 

has to go (r + fi) farther to get to the scatterer, but for wave “1” the scatterer is (r 81) 
farther in front of the origin, Ro is large compared with the body size. Hence, 

is k Ro + r (&I - fij . The wave “2” 

N 

E -  1 
N 

which differs from Rayleigh scattering by a factor of the form sei’ dV, where 
6 = k r . (A - h). We now evaluate the normalized factor 

N 

Figure 4. Phase change due to scattering. 
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R(0,cp) = f $ei6 dV (67) 

for a cylindrically shaped body. As seen from Figure 5 the vector hi - ^n has the length 
2 sin (8/2) along the bisectrix of the direction ih and - a. Hence, 

e 6 = s 2 k s i n  - 
2 

where 

Hence, 

1 ik ssin- 0 
ds 

V 

where we are integrating over “slices” perpendicular to the bisectrix, and each slice has an 
area D and thickness ds. 

sin 8/2 

1 
\ 

B I s ~ C T R  I x 
Figure 5. Geometry of Rayleigh-Cans scattering. 

34 



We have assumed that the phase shifts of the wavelets passing through the medium 
are small, i.e., 

2 k a I m - l l < < 1  (71) 

where a is a length of the order of the size of the particle, and m = the index of 
refraction. 

Circular Cylinders of Finite Length 

The function R(0, $) can be calculated for the circular cylinder of finite 
length. Let its length by Iz and its diameter 2a, and let the phase shift be small for a ray 
traversing the cylinder in any direction. The orientation of the cylinder with respect to the 
incident wave is arbitrary (Fig. 6). 

INCl 
BE 

Figure 6. Geometry of scattering by a cylinder. 
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The volume integration will be performed by using circular slices which are perpen- 
dicular to the cylinder axis since this is easier than using slices perpendicular to the 
bisectrix. 

ikr  - (& - G) 
N let r = px  + 3 y. Fix the axis of the cylinder so that the 

N 
To calculate e 

A 

bisectrk lies in the y - z plane. Then, rfi - fi = a, f +  a, k and 

A h  

r - ( m - n ) = y a l  
N 

Since I& - 61 = 2 sin 0/2 and is in the same direction as the bisectrix, 

2 

or 

e al = 2 sin - sinp 
2 

where p is the angle between the cylinder axis and the bisectrix, and 

e r -&-G) = 2ys in  - sin0 
2 N 

With this relation and with the phase referred to the center of the disk, 

36 



becomes 

+a 
2iky sin - 8 sin0 

e 2 dx dy 

e 2iky sin - sin p 
2 Jm dy 

J -a 

We can make a change of variables by letting 

y = a o  

and 

8 
2 

v = a2ksin - sin0 

then 
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Let o' = -w in the second integral 

or 

and hence 

J O  

2 = F(v) = - J ~ ( v )  
V 

where Jn(v) is a Bessel function of order n and 

F 1  

F(v) = - cosvw d m  dw 
n 

(73) 

(74) 

The phases of the disk have been referred to the center of the disk. In considering 
the whole cylinder, the phase can be referred to the center of the cylinder. This introduces 
another phase factor given by 
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But since 

h ,? (&-?I) = a, j + a Z  k 

the phase is k za, where a, = cos p. This phase effect is given by 

R i :2kz sin - 0 cosp 
2 dz 1 RL (e,@) = a 

Q 
(75) 

Let 

Q , dz = - dt 0 Q 
2 3 Z = t 3 -  2 

p = Rksin -cosp 

1 

= I, cosptdt  

Thus we can say 
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The final phase factor is the product of the two phase factors, i.e., 

R(0,G) = 

The angle p and be related to the angle a between the incident light and the z-axis 
the angle 0/2 and the azimuth angle $J between the incident light - z-axis plane and the 
incident light-scattered light plane by (Fig. 7) 

0 0 
2 2 

cos p = - cos a sin - + sin a cos - cos 

1 NC I DENT 
D I RECTI ON 

AXIS OF 
THE CYLINDER 

(77) 

Figure 7. Scattering angles. 

40 



To find the scattering amplitude tensor we follow the steps as in the Rayleigh scattering 
section to obtain: 

(Eor 3' + Eo* COS e S ' )  R (e , 4) - - k2 (aV) eikRo 
4 n  eo RO 

Hence, 

- R(O,@) SI - 4n Eo 

I I S2 = cos6 R(0,cp) 
4n E o  

(79) 

We note that since R ( e ,  c p )  is independent of polarization effects the polarization will be 
that of a Rayleigh scattering particle: 

IS1 l2 - IS2 i2 - - 1 - cos2 e = sin2 e 
IS, l2 - IS2 l2 

p(e) = 
1 +  COS^ e 1 +  COS^ e 

The differential scattering cross section is 

The appendix gives a computer program listing for calculating the functions F and 
E and the scattering intensity functions. Also included, but not derived in this paper, is 
a phase factor for spheres G.  Table 2 tabulates some values of these factors. Figure 8 
shows them for comparison. 
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TABLE 2. THE DIFFRACTION FUNCTIONS 

U 

-00 . 10 . 20 
30 
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60 
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90 

1-00 
1-10 
1.20 
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2.30 
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E f U )  

1.00000 
.99833 
,99335 
.985Q7 
-97355 
0 9 5 8 8 5  
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Figure 8. Cylindrical functions. 



Randomly Oriented Cylinders [7] 

To obtain the differential scattering cross section in the Rayleigh-Gans domain for 
randomly oriented cylinders, an integration over the solid angle of the orientation of the 
cylinder is performed: 

where R2 is an average cylindrical function for random orientation. The values 8 and @ 
are considered fixed. The solid-angle integration reduces to an integration over p. For the 
case of thin rods (R + E), 

1 

2 = E' (z cos 0) d cosp 

where z = kQ sin 1/2 8. The first term is the sine integral. For the case of disks, 

2 R2 = /o F(z sinp) d cos0 = - [ 1 -F(2z) ] 
Z2 

- 
(84) 

where z = 2ka sin 1/2 B . 

Lorentz-Lorenz Formula 181 

The relation between polarizability and refractive index will now be derived. 

An external electric field stretches and orients molecular dipoles in a dielectric. 
The amount of polarization P is equal to the average electric dipole moment per unit 

volume. The polarization induces a field which modifies the relation between the intensity 
E and the displacement vector D. Hence, 

N 

N N 
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D = e O E + P  
N N N  

The total polarization is caused by (1) polarization by stretching PI and (2) polarization 
by dipole orientation Pz . The polarization caused by elastically “stretched” molecules is 
given by 

PI = N a E’ 
N N 

where N = the number of molecules per unit volume, a = proportionality constant 
(polarizability), and E’ is the effective internal electric field for the dipoles. 

N 

The polarization caused by orienting the permanent dipole moments can be 
approximated by 

pz N E ’  
1 p = -  -__ 

N z 3  kT 
N 

(87) 

where p is the molecular dipole moment, k is the Boltzmann constant, and T is the 
temperature. But for an oscillating field the relation becomes 

where T is the relaxation time for the dipoles, and T is related to the fractural torque on 
the molecules and the temperature. 

The Clausius-Mosetti theory gives the value of the internal field for a dipole as a 
function of the external field E and the polarization P . Consider a cavity within a 

dielectric. The local field in the cavity is made up of two parts: (1) the external field E 

and (2) the field produced by the polarization within the cavity. This second field can be 
calculated knowing that for a small area dA on the surface of a cavity the induced charge 
density is P cos 6 .  For a spherical cavity the amount of charge induced in a spherical zone 

is 2 r r2  P sin 6 cos 6 de, and the field at the center of the cavity is 1/2 eo P cos’ 6 sin 0 d6, 

Integrating over all the charges gives the total field as P/3 eo .  Hence, the internal field is 

N N 

N 

N 

N N 

N 
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Using D = P + eo E = E E , the Clausius-Mosetti relation is obtained: 
r V N  N N 

P 
N 

P 
N E ' =  c__ + -  

E - Eo 3 Eo - 

For polarization due to elastic stretching alone, 

or in terms of the refractive index, m = m, 

Including permanent dipoles gives the following expression: 

showing the variation of the complex refractive index with temperature and frequence. 
For very high frequencies the second term in the bracket is negligible. Then the Rayleigh- 
Gans differential scattering cross section in terms of the refractive index is 

1 

d o =  k4V2 (9) 1 (1+cos2 0 ) R 2  (e ,@)  
dSl 2 
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where 

Scattering by Infinite Cylinders 

In conclusion we will consider the specific case of a thin infinite cylinder. According 
to Cooke and Kerker [ 9 ] ,  the radiation scattered from an infinite cylinder lies on the sur- 
face of a cone whose apical angle is twic'e the complement of the tilt angle. From Rayleigh- 
Gans scattering by cylinders (ka << l) ,  the expression for the scattered intensity is given by 
171 : 

- -  do k4 v2 (m - 'I2 - (1 + cos2 e )  e E2 
dS1 8 n2 (93) 

For infinite cylinders (W-) E becomes significant only when cos p =  0, which includes 
8 = 0, the forward scattering direction. This yields by equation (77) 

cos a sin ( (+)e) = sin a cos ( (+I 8 )  cos 9 

Using this restriction on a in the expression 

COSY = cosacose +sinasin0 cos$ 

or 

2 " )  e e I +s ina  2sin - cos - cos4 ) ( 2  ( 2  
cosy = cos a 2 cos2 - - 

(94) 

(95 

where y is the angle between the cylinder axis and the scattering direction, gives the basic 
result that the scattered light is confined to the surface of a cone of apical angle 2a 
i.e., 7 = a. 
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Theoretically, one can show the formation of the scattering cone of the infinite 
cylinder by varying the length of a finite cylinder. Figure 9 shows the normalized scattering 
differential cross section 

do(6 ) 

do(6 = 0)  

Figure 9. The effect of varying the length R of a finite cylinder 
of radius a = 0.03 pm and refractive index m = 1.33 

(--Q=O.lpm,----R= lpm,-R= 10pm). 

versus the scattering angle for the particular case where the scattered beams lie in the plane 
defined by the incident beam and the axis of the cylinder (Fig. 10). The cylinder of radius 
a = 0.3 pm has a tilt angle of 60 deg; hence, the scattered beams with scattering angles of 
60 deg and -1 20 deg coincide with the axis of the cylinder. For a length R = 0.1 pm 
(R/a N_ 3), the peak due to the scattering cone has not appeared. A wide scattering cone 
peak is seen for the case II = 1 pm (ala N 33) at 0 deg and 120 deg. For R = 10 pm 
(ala -N 333), the scattering pattern approaches that of an infinite cylinder with a scattering 
cone having an apical angle of 120 deg. The value of the normalized scattering differential 
cross section at 6 = 120 deg is nonzero, and not 1 as a result of a finite radius, i.e., 

2 kasin 5) (1 +cos2 0 )  = 0.561 
2 

The cone can easily be seen with a milliwatt helium-neon laser (0.6328 pm) and a 
slender wire [ 101. FIgure 11 shows the geometry of the experiment and photographs of the 
scattering pattern. Both the 25.4-pm-dim copper wire and the 1034-pm-dim wire shown 
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SCATTERED have a tilt angle of approximately 60 deg.' 
The incident beam is made visible through the 
use of smoke. The scattering cone cross 
section is observed on a plane normal to the 
axis of the cylinder. Note that the incident 
beam lies on the cone in the forward scatter- 
ing direction. The thick wire is visible because 
of the light scattered by the smoke. The black 
patch seen in the photograph of the thin 
wire was used to reduce the amount of diffuse 
light coming from the screen. Cooke and 
Kerker [ 91 explain that the irregularities of 
the diffuse circles for the thick wire are 
caused by contamination on the wire, e.g., 
dust. The fine concentric circles which appear 
in the thin wire case are probably caused by 
irregularities on the surface of the wire. 

+e 

Figure 10. Cylinder scattering in the 
plane defined by the cylinder 

axis and incident beam. 

1. Although Rayleigh-Gans theory is not applicable, the scattering geometry is equivalent 
to the Rayleigh-Gans case. 
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a 

b 

C 

Figure 1 1. a. The experiment geometry. 
b. Scattering from thick wire. 
c. Scattering from thin wire. 
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APPEND I X 

COMPUTER PROGRAM 

A listing of a computer program to calculate I 1  and I2 for Rayleigh-Gans scattering 
for a cylinder and a disk is presented, followed by a sample output. The input/output 
information is given on the comment cards at the beginning of the program. A flow chart 
is presented in Figure A- 1. For reference: 

2 

I1  = k6 V2 (%) R2 (e ,@)  

I2 = I1 cos2 e 

and 

(A-5) 

5 1  



aRUN t P  C YLI NDI 4039 3 2  t GAGAQYHST 5 5 1  t 3 r  9 0  
a F O R p I Z F  M A I N  

C T H I S  PROGRAM CDF?DUTES 11 AND I 2  FOR RAYLEIGH-GAN SCATTERING 
C 5nHE8F 5 = (  3(  5TNU-UCOSU) / U 3  1 
C 0 TSK F= Z B E S S l U / U  
C 4 on E =ST vu/u 
C CYLINDER E * F  
C E L L I ~ 5 O I D S - - U S E  G(UJ W I T H  THE R A D I U q  REPLACED BY O C  
C ( S F E  VAN DE HULST PAGE 33 f 
C i hf PUT *+  * *  * +  * f *  * * *  * * * * 
C NT=NUMBCR OF RUNS 
C 
C =Z:CYLINDER(EISK OR R O D  AS L I M I T S )  
C I N D E X Z = l =  YO TNTFWATSON Of BFTA 
C = 2= I N  TE G R A T I O  hE 0 V ER 0 R I C'?'T A T I O  Fc 
C F Y =REF 2 ACT1 VE INDEX ( QE AL 1 
C A =RADIUS (MICRONS) 
C d A V F  =WAVELEYBTH ( Y I C Q O N S )  
C FL rLENGTH OF CYLIh!DER 
C RhTA=ANGLE BETWEEN CYLINDER A X I S  AND THE 
c B I S E C T R I X  (OF SCAT D I R E C T  AND THE A X I S  OF C Y L I N D E R )  
C G U T O U T * * t * * * r * * * r r + * * + *  

C t * * * * t + * * t t + * * * * t * f * * * f * * * * * * *  

INDEX 1 = 1 3  PH EDE 

C ALP =ALPHA 
C X I 1  =11 
C X T ?  112 
C P =POLARIZATTON 
C THETA =SCATTERING ANGLE ( O - l n G  QEGt S T E P X 5 )  
C * * * * * * * * * *  * * * * * * * * * * * * * * * * * *  

1 Q FORMAT ( 3 1 H  ***RAYLEIGH-GANS SCATTERING**+  9 / / I  
5 FORMAT(. 1 8 r  REFRACTIVE INDEX= F7 .3 r  / 1 
6 FORMAT(17H P A Q T : C L E - R A D I U S = r F 7 . 3 t R H  L E N G T H = r F 7 . 3 * / )  
7 F I ) Q Y A T (  1 2 P  W AVELENGTH: F7.3- / 1 
8 FORMBT(7H ALPI - IA=rF7 .3* / )  
9 FORYAT(. 1 H i l r l l H  SCAT ANGLE17Xt 'OH I N T E N S I T Y  F U N C T I O N S I ~ ~ X ~  

1 2 3 H  PFFREE OF P O L A R I Z k T I O N t  / / * l l H  T H E T A ( D E G ) r 7 X m 3 H  I l * l Z X * 3 r !  121 
? 6 X t 8 H  I l + T 2 / 2 ~ 1 3 X * 2 q  P I / )  

1 E  F O ~ M A T ( l H I 1  

2 0 FORM AT f 8H 
2 1  f O R M A T ( 3 Y  T N O E X 2 = 1 1 3 r S H  L = S E T A * F 5 . 2 * 7 5 H  2 = I N T E G Q A T I O N  OVER B L T A )  

1 F O R M A T ( I 3 )  
22 F O P M A T ( 2 1 3 * 2 F l C l . 5 )  

11 F q R H A T ( 1 Y  t I c * 4 X 1 3 F 1 5 . 6 , 4 X 1 f 9 . 6 1  
I ND E X I = e I 3 1 2 2 H  1 :SPHERE 2 =CY L I N  DER 1 

PEAD ( 5  t 1) N I  
N N = l  
PT= 3.1 4 1 5 9 2  7 
P I 2 = 2 . * P I  

RE AD t 51 2 2 1  INDEX 1 I I N Q E X 2 r  BETA* FL 

!?E 4 0  ( 5 
3 FDPMAT(3F10.31 

F K - O I ?  / d A V  E 
GO T(! ( 2 3 r 2 4 1 r I N D E X I  

(Ifl T O  2 5  
24  V O L = ( P I  * A * * Z  1 *FC 
25 CQNTINUE 

2 CONTINUE 

BFTA =BETA + P I 1 1  8C. 
3 1 F u *  A W A V  E 

2 3  V O L = ( 4 - * P l * A * * 3 ) / 3 .  

A3 =1- 1 3 .  
C ALP FOR CYLINDER 'IS CALCULATED F O R  EQUIVALENT SPHERE 
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A L P = P I Z  * t 3. * V O L /  (4. *PI 1 t * * A  3 /  WAVE 
C H I = ( F K * * 6 * V O L * * Z ) * ( I F M - 1 . ) / ( 2 . * P I 1  I * * ?  
W P I T E ( 6 r l O  J 
WRITE 1 6 r  1 4  J 
W R I T E I 6 r 5  )FM 
W R I T E  ( 6 9  6 )  AI F L  
W R I T E ( 6 r 7  )WAVE 
W R I T E  1 6 r  8 )  ALP 
WRITE( 6 r Z C  1 I N D E X 1  
G O  TO ( 2 6 9  27 1 r I N D E X 1  

2 7  W R I T E ( 6  r 2 1 )  INDEX2 *BETA 
26 CONTIYUE 

W R I T E ( 6 r S )  

DO 4 T = l r 3 7  
THFTAZ a 0  

2 1 =2. *F Y * A  * S  T Y ( T HE T A / 2.) 
U l = Z l * S I N ( B E T A  1 
2 2  =FK *F L * S I  N ( THET A /  2.) 
UZ= ZZ*COS (F ETA 1 
U=Z. *ALP*S IN(  T H E T A / ? . )  
GO TO ( 2 5 * 2 9 ) r I N O E X l  

G f l  TO 30 
2 8  F T 4 = ( c ( U ) l * * v  

29 G O  TO ( 3 1 * 3 2 ) r T V D E X t  
3 1  E T A = ( F ( U l t * E ( U 2 ) ) * * 2  

G O  TO 3 0  
3 2  CALL P B A R 2 ( 2 1 * 2 2 r E T A )  
3 0  CONTINUE 

Z E T A = ( C O S ( T H € T A I ) * * Z  
X I l = C H I  *ET A 
X I ? = X I l * Z E T A  
x I 1 2 =  t X I  1 + X I  2 ) I  2. 
P= ( x 1 1 - X I  2 )  / ( x I 1  + X I  2 t 
Y T H Z S  *I- 5 
W R I T E ( 6 r l  1 ) N T H r X I l  r X I Z r X I  1 2 r P  
THETA=THETA+S. * ” I / 1 ’ 3 C .  

4 CONTINUE 
NNZNN *1 
I F  ( N N - N I 1 2 t Z r 1 3  

13  CONTINUE 
STOP 
FUNCTION G ( U )  

IF 

G O  TO 303 

t = r , *3 .  

R F  TUQN 
FUNCTION EfU‘f 
~ ~ s = . o o o o 0 1  
I F  

G O  TO 3 1 3  

E ” S = * D C O @ ~ l  
( A S S  ( l I 1 - E O S )  3 0 2  r 3C2 r 3 7 1  

302  G=l. 

30 I G= ( s IN ( U )  -u*co sc u )  1 1  r u * * 3  ) 

3 0 3  CnNTINUE 

( A B S ( U  ) -EP5 1 3 1 2 r  3 1 2 r  31 1 
312  € = l e  
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3 1 1  E = S I N ( U l / U  
3 1 3  RFTUQN 

FtJMCTION F ( U )  
FPSZ. O O O O 0 1  
IF l ABSLU )-EPS 1 3 2 2 9  3221321 

3 2 2  F = l *  
G O  T O  323 

F=F* 2. /U 
3 2 1  F = B S S L ( U * l t  

3 2 3  RFTUFN 
FUNCTION BSSL ( X rbi 1 
i3=.000001 
BJ=O. 
IF I N )  109 2 0 1 2 0  

RF T U R N  
1 0  I E R = l  

20 I F t X ) 3 0 r 3 0 1 3 1  
30 l F R = 2  

RETUQN 
3 1  l F ( X - 1 5 . ) 3 2 ~ 3 2 r 3 4  
32 NTEST=20. t 10. * X - X  * * Z/?. 

6 3  TO 3 6  
3 4  NTEST=SC!.+X /2. 
36 IF ( N - N T E S T ) 4 0 1 3 9 r 3 f l  
3 8  I E R = 4  

R F  TURN 

N 1  =N+ 1 
aPRE v= .o 
IF (X-5 .15rJ96Or6U 

413 I E R = O  

5 0  ) n A = X + 6 .  
G O  TO 7rJ 

60 MA=1.4*X+6O./X 
7 0  M 3  =N+ IF I X ( X 1 / 4 +  2 

MZEPO=MkXF t M A  I NE3 1 
#YLIX=NTEST 

l o r :  ~n i 9 n  M Z M Z E R O ~ Y M A X ~ Z  
F Y 1 = 1  .DE-28 
F W  .I! 
ALPHA=. 0 
IF ( M - ( M I Z )  * 2 )  I Z C  110 * 1 2 0  

110 J T Z - 1  

1 2 0  J T = l  
1 3 0  H Z M - 2  

GO TO 1 3 C  

nt) 160 Y - l r U Z  
UKZM-K 
3MK=2.*FLOAT(MK)*FMl/X-FH 
FM=FMl  
F M  1=BMK 
I F  (MK-N-1)  1 5 0 r 1 4 0 * 1 5 t ?  

1 4 0  9J=3MK 
1 5 0  J T = - J T  

5 = 1 + J T  
160 ALPHA=ALPHA+3MK*S 

54 



BMK=2. *Fk l /X -FM 
I F  ( N ) 1 8 0 ~ 1 7 0 * L 9 0  

17L; B X B M K  
1 5 0  ALPHA= ALPH A +  3MK 

B J = B  J/ALPHA 
BSSL=QJ 
I F  ( A R S ( B J - B P R E V ) - A @ S ( D * B J 1 ) 2 0 0 r 2 0 0 1 1 9 0  

190 BPREV=RJ 
I E P = 3  

200 RFTURN 
END 

4FORv IS RBAR2 
SUBROUTINE RB A R 2  1 2  1 t Z 2 r  ETA 1 

C INTEGRATES OVER ORIENATION OF THE CYLINDERS 
DIME NSION 
C A L L  I N T l E t Y c ' A t  
ETA= -0 
00 1 1 = 1 * 1 5  
F l z  I Y ( I  1 t 
U l = Z l  *SQRT I l . - F l * F l )  
U2= 2 2*F 1 
E T = ( F ( U l ) * E I U 2 1 ) * * 2  
ETA =ET*A ( I +ETA 

1 C9MTINUE 
RETURN 
FUNCTION G ( U )  
EPS= a000001 
I F  ( A B S ( U ) - E p S )  3 0 2 1 3 C 2 1 3 0 1  

G O  TO 3 0 3  
G = f  5 I N  f U )  -U*CO S( 11 1 ) I  ( U * + 3  1 

Y ( 16 1 r A ( I6 i 

3 0 2  G=1. 

T U  1 
G=G*3 

503 CPMTIVUE 
R F  TURN 
FUNCTION E ( U )  
EnC=.oO@flQl  
I F  l A B S ( U  ) -EPS 1 3 1 2 1  3 1 2 * 3 1  I 

3 1 2  F = l *  
GQ TO 3 1 3  

3 1 1  E = S I N  ( U )  /U  
3 1 3  RFTURN 

f UWCT I O N  F (U 1 
E D S =  .ooocc1 
IF ( A B S I U I - E P S )  3 2 7 1  3221 3 2 1  

G O  TO 3 2 3  
3 2 2  F = l *  

3 2 1  F = B S S L ( U * f )  

3 2 3  CONTINUE 
F = F * 2  ./U 

RF: TURN 
FUNCTIOlri B S S L f  X r N )  
D= .ooooo 1 
B J = D .  
IF ( N t  101 20  120 

10 I E R = 1  
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RETURN 
20 I F ( X 1  5 0 ~  3 0 r 3 1  
3 0  I E R = Z  

RF: TURN 
3 1  XF(X-15 . )32  ?e34 
32 WTFS = 2 0 . + 1 0 . * Y - X * * 2 / 3 .  

GO T 36 
3 4  N T F S I  = 9 0 . + X / t .  
3 6  I F ~ N - ’ ~ T E S T ) 4 C ! r 3 8 r 3 8  
3 3  I E 4 = 4  

40 IER=O 
RETURN 

N l = N + l  
BPREV =. D 
I F  f X-5.1509 6 0  60 

GO T O  70 
50 MA=X+6. 

60 M A  =l 4* X +GO. / X 
7 0  M B = N + I F I X ( X ) / 4 + Z  

MZFRO = % A X @  ( M A  9 M8 1 
MMA XZNTEST 

1 0 0  00 1 9 7  Y=MZEROrMMAX*3 
F M l = l . O E - 2 8  
FM=.O 
ALPHA= .I2 
I F  ( M - ( # / 2 ) * 2 )  1 2 O r 1 1 O r 1 2 0  

110 J T = - I  
G O  T3 1 3 0  

12@ J T = l  
1 3 0  M2=M-2 

00 160 K Z l r M 2  
MKZM-U 
8MK= 2. *FLOA T ( M K  1 * F M l /  X-FM 
F M = F M l  
F M l I 8 M K  
I F  

1 4 0  EJ=BMK 
150 J T = - J T  

S = 1 +  J T  

BMK = 2 .  *FM 1/ X-F M 

(MI(-N-1) 1 50r  1 4 0  * 1 50 

1 6 0  ALPHA=ALPUA+SYK*S 

I F  ( ~ ) i s r 1 ~ 1 7 o ~ i a o  
1 7 C  BJ IBMK 
1 30 ALPHA = ALPY A +  3 YU 

BJ=BJ /ALPHA 
B 5 5 L Z 3 J  
I F  

1 9 0  .3PREV=BJ 
TER= 3 

200 RETURN 
END 

SUB R OUT I N E  

f ABStB J-BPREV f - A E S ( D * E J )  ) 2 0 0 1 2 C C v  J90 

JFORI I S  f N T 1 6  
I N T  1 6  ( Y r A ) 

DIMENSION Y (  16) * a (  1 6 )  
C 15 P O I N T  GAUSSIAN SUB!?O?ITINE 
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***RAYLEIGH-CANS SCATTERING*** 

REFRACTIVE INDEX= 1.300 

PARTICLE-RAOIUS= . 100 LENGTH=100.000 

WAVELENGTH= .SO0 

ALPHA= 11.417 

INOEXl=  2 l=SPHERE Z=CYLI&OER 
X7= 1 1ZRFTA. 1 - 5 7  2 z T N T F W I O N  OVFR BFTA 

SCAT A N t l F  INTFNSTTY FUNCTIONS DEGREE OF POLARIZATION 

THFTAUIFG) I 1  I 2  Il+J,2/2 P 

0 88601.623n47 88601.623047 88601.6230~7 .000000 
88335,746094 87664.736328 88000.241211 -003813 5 

in R 7 S l U - t I K 7 Z C  R 4 q o 4 - 1 l 6 9 3 4  867-586 0 1 5 3 0 8  
1 5  86244.449219 80467.155039 83355.806641 -034654 
7n R-(1,_89n_h25 7 9 5 7 5 - 1 8 7 6 1 7  - .  0 6 2 1 2 2  

82245.773437 67556.167969 74900.970703 .098060 25 
zn 7 9 6 7 7 - 7 1 7 7 7 3  5 9 7 2 L f h 2 5 9 8  69678 - 1 8 9 4 5 3  .142857 
35  76678.210937 51451.852O51 64065.031250 - 1 9 6 8 8 1  
un 7 7 ( 1 U l r F ~ ( 1 D 6  431797- 3-6 58269,577461 2 6 0 3 7 9  
45  63983.120117 34991.560547 52487.340332 .333333 
50 66363. 496094 27419.79b584 46891.646973 -425252 
5 5  62642.520996 20608.758789 41625.639648 .504902 
60 5 8 8 7 6 - 9 5  4 5 9 0  14719.239868 36798 .C97168 .600005 

6 5  55119.285645 9844.647095 32481.966309 - 6 9 6 9 2 0  
1 787 1 5  - 6 4 5 7 5 2  - 7 9 0 5 4 6  

7 5  47810.275391 3202.682007 25506.478516 .a74437 
en 44334.748047 1336.856812 27835 .8022  46 .94 1 4 5 8  

sn '178 87.4RA770 0 
85 41018-243164 311.579933 20669.911377 ,984922 

1 8 9 4 1  - 2 4 4 3 8 5  1.000005 
95  34 94 3.1 7 9687 265.432404 17604,305908 -984922 

inn 377-5 971,264744 165 90 - 8 7  20 7 0  941458 
1 0 5  29689.675781 1988.830307 15839.252930 -874437 
I 1 0  27382.871876 32 0 3.0695 1 9  15292.470581 .790546 
1 1 5  25 28 4.722656 45 16.00665 3 1 4 900.3 64 6 2  4 .696920 
17n 7 3 T 9 T .  1 6 3 0 8 6  5848,288818 14620.725957 .600005 

8 14270,976074 415252 
1 3 5  18874.645996 9437 - 3 1 9 9 4 6  1 4 1  55.982910 .333333 
140 17723.308105 10400.461060 14061.884521 -260379 
1 4 5  16733.472900 B 1228.325806 13980.899292 -19688 1 
1 5 0  15896. 0 4 7 x 1 9  11922.032349 13909.039673 -142857 
1 5 5  15202.678955 12487.383545 1 3845,R3125U .098060 
1 6 0  14645.975708 12932,719727 13789.347656 .062122 

1 2 5  21700.095459 7 1  39.110352 14419.602905 .so4902 

1 6 5  14219.686890 33267.126606 13743.416748 .U34654 
1 7 0  13918.827026 13499.121460 13708.974243 .015308 
1 7 5  13739.775757 13635.405762 13687.590695 ,003813 
1 Rn 1 3 6 8 0  .I 336 4 2 6  13680.336426 13680.336426 .oooooo 

58 



6 EGlN P READ NI 

NN= 1 w 
READ INDEXl, /-/ 

i I 

CY LlNDER 
v = 

3 FUNCTIONS 
G(u) = 3 (SINu-uCOSu)/u 
F(u) = 2Jp (U)/U 
E(u) = SINu/u 
Ji(u) = BESSEL FUNCTIONS 

u 1 =  z1 S I N P  
z2 = kl  SIN(Q/Z) 

I 
I 
I 
I 
I 
I 
I 
I I 
I I 
I I 
I I ! I 

I 

I I 
I 

I 
I 
I 
I 
I 
I 

I,= xtl I 
12= Il J I 

I 
I 
I 

I 

! 

Figure A- 1. Flow chart for Rayleigh-Gans scattering program. 
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